Metallkomplexe funktioneller Isocyanide, XXIV^[1]

Reaktionen von N-Isocyandialkylamin-Metallkomplexen mit sekundären Aminen

Wolf Peter Fehlhammer*^[+], Robert Metzner und Wilfried Sperber

Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin

Eingegangen am 3. Dezember 1993

Key Words: N-Isocyandialkylamine complexes / Cyanamide complexes / Guanidine complexes / Reactions at the coordinated ligand / N-N bond breakage

Metal Complexes of Functional Isocyanides, $XXIV^{[1]}$. – Reactions of N-Isocyanodialkylamine Complexes with Secondary Amines

Reactions of pentacarbonyl(*N*-isocyanodialkylamine) group 6-metal complexes [M(CO)₅CNNR₂] [M = Cr, W; R = Et, *i*Pr; 2R = $-\{MeCH(CH_2)_3CHMe\}-$] with secondary amines proceed with cleavage of the N–N bond and C→N migration of the metal to give the corresponding *N*-cyanamide complexes [M(CO)₅NCNR'₂] (**1a**-**2g**) [R' = Me, Et, *n*Pr, *n*Bu; 2R' = $-(CH_2)_4-$, $-(CH_2)_5-$, $-(CH_2)_2O(CH_2)_2-$]. However, when

Kürzlich stellten wir die ersten N-Isocyandialkylamin-Komplexe (A) vor^[1,2]. Während Stöchiometrie und Strukturen denen von C-Isocyaniden entsprechen, frappiert der immense Stabilitätszuwachs, den die thermolabilen N-Isocyanide bei Metallkoordination erfahren. Damit war der Weg frei für Untersuchungen zur Chemie dieser Liganden. Die wohl bekannteste Reaktion von C-Isocyanidkomplexen ist die mit Aminen zu N,N'-Diaminocarbenkomplexen^[3]. Es war zu prüfen, ob die N-Isocyandialkylamine auch hierin ihren C-Analoga folgten oder ob es ausgelöst durch eine mögliche N-N-Bindungsspaltung zu alternativen Reaktionsweisen kommen würde. Hier berichten wir über Umsetzungen von N-Isocyanidkomplexen mit sekundären Aminen.

$$L_n M - C \equiv N - N_{H_n} R$$

 R

Ergebnisse und Diskussion

1. Pentacarbonyl(cyanamid)-Komplexe der Gruppe-6-Metalle

Läßt man auf Pentacarbonyl(*N*-isocyandialkylamin)chrom oder -wolfram überschüssiges sekundäres Amin einwirken, so entstehen rasch intensiv gelbe Lösungen, aus denen kristalline gelbe Feststoffe isoliert werden können. Im num(II) complexes $[PtI_2(HNR'_2){HN=C(NR'_2)_2}]$ (3a-c) $[R' = Et; 2R' = -(CH_2)_5-, -(CH_2)_2O(CH_2)_2-]$ were obtained. Structural assignments are made on the basis of IR, NMR (¹H, ¹³C), and mass spectroscopy as well as of an X-ray structure analysis of *trans*-[PtI₂(HNEt₂){HN=C(NEt₂)₂}] (3a). Unterschied zu den bei den Umsetzungen mit primären Aminen erhaltenen und auch hier erwarteten (¹) Amino(hv.

diiodobis(N-isocyanodialkylamine)platinum(II) was allowed

to react with an excess of the amine amine(guanidine)plati-

Aminen erhaltenen und auch hier erwarteten (!) Amino(hydrazino)carben-Komplexen^[4] weisen jedoch die neuen Verbindungen 1a-2g im IR-Spektrum keine v(NH)-Banden auf; vielmehr erscheint eine Bande im Bereich von 2260 cm⁻¹, die möglicherweise einer Nitril-Valenzschwingung zuzuschreiben ist. Auch stellten wir fest, daß aus den Umsetzungen verschiedener N-Isocvanid-Komplexe mit dem gleichen Amin stets das gleiche Produkt resultierte. Schließlich ergaben die NMR- sowie die analytischen Daten zweifelsfrei, daß die entstandenen Nitril-Komplexe nicht mehr die Alkylreste des ursprünglichen N-Isocyandialkylamin-Liganden, sondern die des eingesetzten sekundären Amins enthielten, so daß wir von einem Reaktionsverlauf entsprechend Gl. (1) ausgehen können. Danach erfolgt wie im Fall der primären Amine zunächst die übliche nucleophile Addition zum Amino(hydrazino)carben-Komplex^[4], an die sich jedoch eine N-N-Bindungsspaltung gefolgt oder begleitet von einer Wanderung des Metalls an das Nitren-Stickstoffatom anschließt.

Diese dem Curtius-Abbau analoge Reaktionsbeschreibung wird durch weitere Beobachtungen gestützt: Verfolgt man die Reaktion IR-spektroskopisch, so treten nach sehr kurzen Reaktionszeiten Banden auf, die von Amino(hydrazino)carben-Komplexen stammen können. Bei längeren Reaktionszeiten und hohem Aminüberschuß finden sich im Rohprodukt IR-Banden, die wir nichtkoordiniertem Cyanamid zuordnen können (vgl. dazu 2.). Mit sterisch anspruchsvollen Dialkylaminen wie Diisopropylamin, Dicyclohexylamin oder 2,6-Dimethylpiperidin erfolgt keine

© VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994

^{[+1}Ncue Adresse: Deutsches Museum, Museumsinsel 1, D-80538 München.

$$M(CO)_5 - N \equiv C - NR'_2$$

R' =	Me	Et	<i>n</i> Pr	<i>n</i> Bu	2R' =	-(CH ₂) ₄ -	-(CH ₂) ₅ -	-(CH ₂) ₂ O(CH ₂) ₂ -
Cr	1a	1b	1c	1d		le	lf	1g
W	2a	2b	2 c	2d		2e	2f	2g
	-					•		

$$(OC)_{5}M - C \equiv N - NR_{2} \xrightarrow{NHR'_{2}} (OC)_{5}M - C \xrightarrow{\downarrow}_{N^{1}} NR_{2}$$

$$(OC)_{5}M - C \xrightarrow{\downarrow}_{R'} NR_{2}$$

$$(I)$$

$$\xrightarrow{\text{-NHR}_2} (OC)_5 M - N = C - NR_2^2$$

Spaltungen von N-N-Bindungen in Nachbarschaft zu einer Metall-Kohlenstoff-Bindung mit anschließender Umlagerung zu Metall-N-koordinierten Produktkomplexen sind in der metallorganischen Chemie relativ häufig anzutreffende Reaktionssequenzen. Aus Metallcarbonylen und Stickstoffquellen wie Azid oder Hydrazin^[5,6], aber auch umgekehrt aus komplexgebundenem Azid und CO entstehen so Isocyanatokomplexe^[7], wahrscheinlich sogar über den gleichen Übergangszustand^[8]. Die größte Ähnlichkeit mit dem hier beschriebenen Reaktionsverhalten koordinierter N-Isocyanide besitzt zweifellos die Umwandlung des Aminocarbin-Komplexes $[Cr(CO)_5CNEt_2]^+$ mittels N_3^- in den Cyanamidkomplex [Cr(CO)₅N \equiv C-NEt₂], von dem eine Röntgenstrukturanalyse vorliegt^[9]. Mit Hydrazinen lassen sich auch spezielle Carben- in Nitrilliganden überführen^[10], und eine weitere besondere Verwandtschaft besteht zu den erst kürzlich gefundenen Reaktionen zwischen Metallo-Nitrilyliden der Gruppe-6-Metalle und Aryldiazoniumsalzen, die u.a. zu Cvanamidin-Komplexen [M(CO)₅-{N=C-N=C(CO₂Et)-NHAr}] führen^[11]. Übrigens können selbst N=N-Doppelbindungen mit Hilfe von Übergangsmetallkomplexen bereits unter sehr milden Bedingungen gespalten werden; da man heute annimmt, daß die enzymatische Reduktion von molekularem Stickstoff über Diimin-Zwischenstufen verläuft, sind solche Prozesse auch von biologischem Interesse^[12].

Einige der hier beschriebenen Cyanamid-Komplexe wurden erstmals 1966 auf direktem Weg dargestellt und untersucht^[13].

Ausgewählte IR-Daten sind in Tab. 1 zusammengestellt, die ¹H- und ¹³C-NMR-Spektren enthält Tab. 2. In den Massenspektren dominieren jeweils die Moleküllinie, die Linien der durch sukzessiven CO-Austritt gebildeten Fragmente und die Massenlinie L⁺ des intakten Liganden (Experimenteller Teil). "Komplementäre" Schiffbasen-Komplexfragmente (wie in den Massenspektren der zugrundeliegenden Isocyanamin-Komplexe^[2]) wurden jedoch nicht beobachtet.

Tab. 1. Charakteristische IR-Daten	[cm ⁻¹] der Dialkylcyanamid-Kom-
plexe 1	la-2g

			(20)	
	V(CH)	v(NC)	v(CO)	Phase
1a	2937w	2268m	2072m, 1927vs,	KBr
			1895s, 1878s	
lb	2986w, 2938w, 2908w	2260m	2071m, 1932vs,	KBr
			1891s	
1c	2973m, 2937w, 2865w	2263m	2072m, 1939vs,	KBr
			1892s	
1d	2963m, 2943w, 2892w	2261m	2074m, 1940vs,	KBr
			1894s	
le	2992w, 2962w, 2937w, 2901w	2262m	2075m, 1940vs	KBr
		2262w	2072w, 1948w,	CHCl3
			1940vs, 1895sh,w	
1f	2963m, 2937w, 2860m	2261m	2072m, 1938vs,	KBr
			1890s	
1g	2978w, 2927w, 2908sh, 2860m	2259m	2070m, 1939vs,	KBr
			1892s	
2a	2934w	2262m	2073m, 1921vs,	KBr
			1869s	
		2265	2075m, 1978w,	CH ₂ Cl ₂
			1934vs, 1890sh	
2b	2984w, 2940w, 2901w	2260m	2077m, 1940vs,	KBr
			1908vs	
		2256w	2074m, 1982w,	Cyclohexan
			1950m, 1937vs,	
			1915s	
2c	2974m, 2939w, 2865w	2261m	2074, 1940vs,	KBr
			1902s	
2d	2963m, 2943w, 2892w	2259m	2071m, 1939vs,	KBr
			1907s	
2e	2290w, 2960w, 2930w, 2900w	2260m	2076m, 1927vs	KBr
		2258w	2072w, 1982w,	Cyclohexan
			1937vs, 1928s,	
			1914m	
2f	2959m, 2934w, 2863m	2260m-s	2073m, 1935vs,	KBr
			1875s	
		2258w	2074m, 1983w,	n-Hexan
			1939vs, 1917s	
2g	2980w, 2928w, 2906sh, 2863m	2260m-s	2068m, 1918vs	KBr

2. Amin(guanidin)platin(II)-Komplexe

Verschiedene Diiodobis(N-isocyandialkylamin)platin(II)-Spezies ergeben mit Diethylamin in großem Überschuß wiederum unabhängig vom speziellen N-Isocyanidliganden ein und dasselbe Reaktionsprodukt (**3a**). Weitere stabile gelborange Verbindungen **3b**, c entstehen mit Piperidin und Morpholin mit 20-30% Ausbeute.

Die IR-Spektren dieser Komplexe weisen Banden um 3380-3330 und 3190-3170 cm⁻¹ auf, die v(NH)-Schwingungen zugeordnet werden können. Ein sich von hier aus bis ca. 1600 cm⁻¹ erstreckendes "Fenster" macht deutlich, daß im Molekül keine C=N- oder N=C-Dreifachbindungen vorhanden sind. Zwei starke Banden bei etwa 1570 und 1520 cm⁻¹ sprechen für einen N,N,N',N'-Tetraalkylguani-

Tab. 2. Ausgewählte ¹H- und ¹³C{¹H}-NMR-Daten der Verbindungen 1a-2g (δ-Werte, Solvens CDCl₃, int. Standard CHCl₃)

	¹ H-NMR	¹³ C-NMR			
1a	2.94 (CH ₃ , s, 6H)	217.8 (CO _{trans}), 215.1 (CO _{cis}), 125.6 (NC), 38.8 (CH ₃)			
1b	3.04 (CH ₂ , q, 4H), 1.16 (CH ₃ , t, 6H)	219.9 (CO _{trans}), 215.2 (CO _{cis}), 125.2 (CN), 46.1 (CH ₂), 12.9 (CH ₃)			
1c	3.00 (NCH ₂ , t, 4H), 1.32 (CH ₂ , sext, 4H), 1.10 (CH ₃ , t, 6H)	220.1 (CO _{trans}), 215.1 (CO _{cis}), 124.9 (NC), 54.1 (NCH ₂), 21.6 (CH ₂), 10.8 (CH ₃)			
1d	2.94 (NCH ₂ , t, 4H), 1.33 (CH ₂ , m, 4H), 1.05 (CH ₂ , m, 4H), 0.97 (CH ₃ , t, 6H)	220.6 (CO _{trans}), 215.4 (CO _{cis}), 125.9 (NC), 52.1 (NCH ₂), 34.2 (CH ₂), 20.1 (CH ₂), 13.8 (CH ₃)			
1e	3.08 (NCH ₂ , m, 4H), 1.63 (CH ₂ , m, 4H)	220.9 (CO _{trans}), 215.3 (CO _{cis}), 125.9 (NC), 49,7 (NCH ₂), 23.1 (CH ₂)			
lf	3.10 (NCH ₂ , m, 4H), 1.65 (CH ₂ , m, 6H)	220.2 (CO _{trans}), 215.7 (CO _{cis}), 125.3 (NC), 49.2 (NCH ₂), 27.3 (CH ₂), 23.4 (CH ₂)			
1g	3.72 (OCH ₂ , dt, 4H), 3.24 (NCH ₂ , dt, 4H)	220.6 (CO _{trans}), 215.9 (CO _{cis}), 125.8 (NC), 67.2 (OCH ₂), 48.4 (NCH ₂)			
2a	2.92 (CH ₃ , s, 6H)	200.8 (CO _{trans}), 196.6 (s + 183 W-Satelliten, CO _{cis} , $^{1}J_{WC}$ = 125 Hz), 123.8 (NC), 35.9 (CH ₃)			
2b	3.04 (CH ₂ , q, 4H), 1.16 (CH ₃ , t, 6H)	200.4 (CO _{trans}), 196.4 (s + ¹⁸³ W- Satelliten, CO _{cis} , ¹ J_{WC} = 118 Hz), 124.0 (NC), 46.2 (CH ₂), 13.2 (CH ₃)			
2c	2.98 (NCH ₂ , t, 4H), 1.32 (CH ₂ , sext, 4H), 1.08 (CH ₃ , t, 6H)	200.7 (CO _{trans}), 196.6 (s + ¹⁸³ W- Satelliten, CO _{cis} , ¹ J_{WC} = 122 Hz), 123.4 (NC), 54.0 (NCH ₂), 21.4 (CH ₂), 10.5 (CH ₃)			
2ď	2.96 (NCH ₂ , t, 4H), 1.34 (CH ₂ , m, 4H), 1.02 (CH ₂ , m, 4H), 0.94 (CH ₃ , t, 6H)	200.6 (CO _{trans}), 196.5 (s + ¹⁸³ W- Satelliten, CO _{cis} , ¹ J _{WC} = 119 Hz), 123.9 (NC), 52.5 (NCH ₂), 34.3 (CH ₂), 20.0 (CH ₂), 13.7 (CH ₃)			
2f	3.08 (NCH ₂ , m, 4H), 1.62 (CH ₂ , m, 6H)	200.8 (CO _{trans}), 196.8 (s + ¹⁸³ W-Satelliten, CO _{cis} ; ¹ J_{WC} = 120 Hz), 49.2 (NCH ₂), 27.3 (CH ₂), 23.4 (CH ₂)			

din-Liganden, der sich durch nucleophile Addition von überschüssigem Amin an intermediär entstandenes, *Platin-*(*II*)-aktiviertes Cyanamid gebildet hat^[14]. Während der hochsymmetrische Guanidinium-Grundkörper [C(NH₂)₃]Cl selbst nur eine IR-aktive CN-Valenzschwingung aufweist [$v_3(E')$: 1640 cm⁻¹], sind für Moleküle der weniger symmetrischen Form ZXY₂ (X = Zentralatom, hier C), wie sie die Komplexe 3 und die Guanidin-Liganden in 3 darstellen, solche Bandenaufspaltungen typisch^[15]. In Verbindung 3c tritt zusätzlich eine schwache Bande bei 1709 cm⁻¹ auf, die einem eingelagerten Aceton zugeordnet wird.

Im ¹H-NMR-Spektrum von (Diethylamin)diiodo-(N,N,N',N'-tetraethylguanidin)platin(II) (**3a**) geben die Guanidin-Ethylgruppen Anlaß zu zwei Tripletts und zwei Quartetts, die vermutlich aus ihren unterschiedlichen *exo*und *endo*-Positionen resultieren; ein Methyl-Triplett stammt

vom Aminliganden. Die Methylenprotonen am quartären Stickstoff des koordinierten Amins sind diastereotop und treten deshalb als zwei Multipletts in Resonanz. Das ¹³C-NMR-Signal des zentralen Guanidin-Kohlenstoffatoms erscheint bei $\delta = 166.4$ (Experimenteller Teil).

In den Massenspektren der Verbindungen wird jeweils der Molekülpeak beobachtet, gefolgt von der Abspaltung zweier Moleküle HI und anschließender Amin-Abspaltung. Die Massenlinie des freien Guanidin-Liganden erscheint mit schwacher Intensität.

3. Kristall- und Molekülstruktur von 3a

Im Kristallverband liegen diskrete Amin(guanidin)platin-Komplexmoleküle vor, von denen eines in Abb. 1 gezeichnet ist. Die Koordinationsgeometrie des zentralen Platin-Atoms ist in guter Näherung pseudoquadratisch-planar. Die I-Pt-N-Winkel liegen zwischen 89 und 93°, die größte Abweichung von der "besten Ebene" N1, I1, N2, I2, Pt beträgt 0.07(1) Å. Die beiden trans-ständigen Iodoliganden haben zum Platin-Atom identische Abstände, die beiden Pt-N-Bindungslängen unterscheiden sich dagegen deutlich voneinander: Während die Bindungslänge zwischen dem Platin-Zentrum und dem pyramidalen Aminstickstoff N2 - er steht nach "Beste-Ebenen-Rechnungen" 0.46(1) Å über der Ebene C2, C3, Pt - 2.092(9) Å beträgt, ist der Pt-N1-Abstand mit 2.007(9) Å merklich kürzer, was mit dem hohen sp²-Anteil am Hybridisierungszustand von N1 zu erklären ist. Die Umgebung von Cl ist bei einem mittleren Atomabstand von der Ebene N1, N3, N4, C1 von nur 0.004(1) Å praktisch planar. Die C1-N-Abstände liegen zwischen 1.32 und 1.36 Å; wegen der hohen Standardabweichung sind sie nicht signifikant verschieden. Auch an anderen röntgenstrukturanalytisch untersuchten Guanidinyl-Verbindungen wurden praktisch gleich lange CN-Bindungen gefunden, was im Einklang mit den gängigen Mesomerievorstellungen steht^[16,17]. Dazu paßt auch die weitgehende Einebnung der Umgebungen der Stickstoffatome N3 und N4: Sie befinden sich nur 0.17(1) bzw. 0.03(1) Å über den Ebenen, die aus den angebundenen Nichtwasserstoffatomen C1, C4, C5 bzw. C1, C6, C7 gebildet werden. Diese beiden Ebenen bilden mit der Guanidinium-Hauptebene Interplanarwinkel von 39.2 und 29.8°.

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und dem Graduiertenkolleg "Synthese und

Abb. 1. ORTEP-Zeichnungen von **3a**; Bindungslängen [Å]: Pt–I(1) 2.597(2), Pt–I(2) 2.597(2), Pt–N(1) 2.006(9), Pt–N(2) 2.095(9), N(1)–C(1) 1.32(1), C(1)–N(3) 1.36(1), C(1)–N(4) 1.35(2); Bindungswinkel [°]: I(1)–Pt–N(1) 89.4(3), I(1)–Pt–N(2) 88.5(2), I(2)–Pt–N(1) 89.0(3), I(2)–Pt–N(2) 93.1(2), Pt–N(1)–C(1) 132.7(9), N(1)–C(1)–N(3) 121.0(10), N(1)–C(1)–N(4) 120.8(9), N(3)–C(1)–N(4) 118.3(9)

Strukturaufklärung niedermolekularer Verbindungen" für die großzügige finanzielle Förderung unserer Arbeiten sowie Herrn Prof. Dr. J. Fuchs für die Durchführung der Röntgenstrukturmessung.

Experimenteller Teil

Sämtliche Umsetzungen wurden unter Argon und in getrockneten, argongesättigten Lösungsmitteln durchgeführt. Die *N*-Isocyanid-Komplexe $M(CO)_5CNNR_2^{[2]}$ (M = Cr, W) und $PtI_2(CN-NR_2)_2^{[1]}$ [R = Et, *i*Pr; 2R = $-\{MeCH(CH_2)_3CHMe\}-]$ wurden nach Literaturvorschriften hergestellt.

IR: Beckman IR 4220 und Perkin-Elmer 983. – NMR: Bruker AM 270. – MS: Varian CH 5 und Finnigan Mat 711 (Anregungsenergie jeweils 80 eV). – Elementaranalysen: CHN-Rapid. – Schmelz- und Zersetzungspunkte (unkorrigiert): Gallenkamp Melting Point Apparatus oder Büchi Modell 510.

1. Pentacarbonyl(dimethylcyanamid)chrom(0) (1a) und -wolfram(0) (2a): In eine auf -78° C gekühlte Suspension von 2.00 mmol [M(CO)₅CNNR₂] in 20 ml Pentan wird überschüssiges Dimethylamin einkondensiert. Dann wird langsam auf Raumtemp. erwärmt, wobei der Ausgangskomplex in Lösung geht und vollständig reagiert. Nach 10 min wird die intensiv gelbe Lösung eingeengt, die entstandenen Kristalle werden abgesaugt und mit wenig kaltem *n*-Heptan nachgewaschen. Die analysenreinen Verbindungen fallen mit 80–90% Ausbeute an und können aus Ethanol/Wasser umkristallisiert werden. – MS, *mlz* (%): 1a: 262 (81) [M⁺], 234 (59) [M⁺ - CO], 206 (64) [M⁺ - 2 CO], 178 (89) [M⁺ - 3 CO], 150 (100) [M⁺ - 4 CO], 122 (38) [M⁺ - 5 CO], 70 (48) [L⁺]. – 2a: 394 (81) [M⁺], 366 (17) [M⁺ - CO], 338 (65) [M⁺ - 2 CO], 310 (100) [M⁺ - 3 CO], 282 (84) [M⁺ - 4 CO], 254 (88) [M⁺ -5 CO], 69 (35) [L⁺ - H].

Über Ausbeuten, Analysen, Farben und Schmelzpunkte gibt Tab. 3 Auskunft; die Molekülmassen wurden größtenteils massenspektroskopisch ermittelt (Exp. Teil).

2. Pentacarbonyl(dialkylcyanamid)chrom(0) (1b-g) und -wolfram(0) (2b-g): Eine Lösung von 2.00 mmol $[M(CO)_5CNNR_2]$ in 20 Toluol wird mit 5.00 mmol des jeweiligen Amins versetzt und 2 h gerührt. Danach wird auf etwa 5 ml eingeengt; die entstandenen Kristalle werden abgesaugt und mit wenig Pentan gewaschen. Etwaige ölige Produkte werden in Ethanol aufgenommen und mit

Tab. 3. Analysen, Schmelzpunkte und Ausbeuten der Verbindungen 1a-3c (^[a] Analysenwerte für ein Addukt mit 1/2 Molekül Aceton berechnet)

	Summenformel (Molmasse)	Farbe	Analysendaten Gef. (Ber.)			ZersP. [°C]	Ausb. [%]
			<u>%C</u>	%Н	%N		
1a	C8H6CrN2O5	gelb	36.45	2.24	10.48	84	78
	(262.14)		(36.65)	(2.31)	(10,69)		
1b	$C_{10}H_{10}CrN_2O_5$	gelb	41.31	3.32	9.57	75	59
	(290.20)		(41.39)	(3.47)	(9.65)		
1c	$C_{12}H_{14}CrN_2O_5$	gelb	45.18	4.61	8.72	87	53
	(318.25)		(45.29)	(4.43)	(8.80)		
1d	$C_{14}H_{18}CrN_2O_5$	gelb	48.21	5.18	8.29	76	42
	(346.30)		(48.56)	(5.24)	(8.09)		
1e	$C_{10}H_8CrN_2O_5$	gelb	41.85	2.79	9.64	135-138	50
	(288.18)		(41.68)	(2.80)	(9.72)		
1f	$C_{11}H_{10}CrN_2O_5$	gelb	43.81	3.45	9.33	93	50
	(302.21)		(43.72)	(3.34)	(9.27)		
1g	$C_{10}H_8CrN_2O_6$	gelb	39.58	2.72	9.23	111-113	50
	(304.18)		(39.49)	(2.65)	(9.21)		
2a	$C_8H_6N_2O_5W$	gelb	24.82	1.83	7.18	102	85
	(394.00)		(24.39)	(1.53)	(7.11)		
2b	$C_{10}H_{10}N_2O_5W$	hellgelb	28.31	2.33	6.66	84-86	66
	(422.05)		(28.46)	(2.39)	(6.64)		
2c	$\mathrm{C}_{12}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{5}\mathrm{W}$	gelb	31.79	3.26	5.98	93	46
	(450.11)		(32.02)	(3.14)	(6.22)		
2đ	$C_{13}H_{14}N_2O_5W$	gelb	35.08	3.67	5.81	87	38
	(478.16)		(35.17)	(3.79)	(5.86)		
2e	$C_{10}H_8N_2O_5W$	gelb	29.60	2.18	6.79	100	~50
	(420.03)		(28.60)	(1.92)	(6.67)		
2f	$C_{11}H_{10}N_2O_5W$	gelb	30.79	2.24	6.55	144	~50
	(434.06)		(30.44)	(2.32)	(6.45)		
2g	$C_{10}H_8N_2O_5W$	gelb	28.11	1.99	6.33	119	~50
	(436.03)		(27.55)	(1.85)	(6.42)		
3a	$C_{13}H_{32}I_2N_4Pt$	orange	22.60	4.44	7.96	82	64
	(693.31)		(22.52)	(4.65)	(8.08)		
3b	$C_{16}H_{32}I_2N_4Pt$	orange	27.29	4.18	7.57	152	37
	(729.35)		(26.35)	(4.42)	(7.68)		
3c[a]	$C_{13}H_{26}I_2N_4O_3Pt$	orange	22.94	3.47	7.05	158	68
	(735.26)		(22.79)	(3.82)	(7.33)		

wenig Wasser gefällt. – MS, m/z (%): 1c: 318 (73) [M⁺], 290 (62) [M⁺ – CO], 262 (58) [M⁺ – 2 CO], 234 (81) [M⁺ – 3 CO], 206 (100) [M⁺ – 4 CO], 178 (42) [M⁺ – 5 CO], 126 (54) [L⁺]. – 1d: 346 (68) [M⁺], 318 (67) [M⁺ – CO], 290 (68) [M⁺ – 2 CO], 262 (100) [M⁺ – 3 CO], 234 (81) [M⁺ – 4 CO], 206 (36) [M⁺ – 5 CO]. – 2c: 450 (100) [M⁺], 422 (32) [M⁺ – CO], 394 (50) [M⁺ – 2 CO], 366 (58) [M⁺ – 3 CO], 338 (35) [M⁺ – 4 CO], 310 (12) [M⁺ – 5 CO], 125 (54) [L⁺ – H]. – 2d: 478 (67) [M⁺], 450 (43) [M⁺ – CO], 422 (52) [M⁺ – 2 CO], 394 (63) [M⁺ – 3 CO], 366 (39) [M⁺ – 4 CO], 338 (23) [M⁺ – 5 CO], 154 (38) [L⁺].

3. (Dialkylamindiiodo (N,N,N',N'-tetraalkylguanidin)platin(II) (3a-c): 2.00 mmol [Ptl₂(CNNR₂)₂] werden mit 10 ml des jeweiligen Amins versetzt und 12 h gerührt. Anschließend wird das überschüssige Amin i.Vak. entfernt und der Rückstand mehrere Stunden im Hochvak. getrocknet. Umkristallisieren aus heißem *n*-Hexan (3a, b) oder Aceton/H₂O ergibt die gelborangefarbenen analysenreinen Substanzen. – IR (KBr): $3a: \tilde{v} = 3374$ m, 3178 m cm⁻¹ (NH), 2972 m, 2925 w, 2867 w (CH), 1561 s, 1512 s (C:::N). – 3b: 3375 m, 3189 m (NH), 2976 w, 2927 s, 2846 m (CH), 1560 s, 1523 s (C:::N). – 3c: 3332 m, 3177 m (NH), 2957 m, 2893 w, 2893 m (CH), 1709 w (C=O), 1578 s, br., 1521 s (C:::N). – ¹H NMR: 3a(CDCl₃): $\delta = 1.1$ (t, 6H, Me), 1.2 (t, 6H, Me), 1.48 (t, 6H, Me), 2.74 (m, 2H, HNCH₂), 3.08 (q, 4H, CH₂), 3.28 (m, 2H, HNCH₂), 3.66 (s, br, 1H, NH), 3.70 (s, br, 1H, NH), 3.92 (q, 4H, CH₂). -3c: [D₆]Aceton: 3.92 (m, 4H, OCH₂), 3.78 (m, 4H, OCH₃), 3.64-3.50 (m, 12H, OCH2; NCH2), 3.24 (m, 4H, NCH2), 2.84 (s, 1H, NH). 2.80 (s, 1H, NH), 2.05 (s, 3H, CH₃). - ¹³C NMR: 3a $(CDCl_3)$: $\delta = 12.8$ (s, Me), 13.3 (s, Me), 14.9 (s, Me), 42.6 (s, CH₂), 42.9 (s, CH₂), 52.0 (s, HNCH₂), 166.4 (s, N=C). - 3c: 68.6 (OCH₂), 67.0 (OCH₂), 66.6 (OCH₂), 54.8 (NCH₂), 49.8 (NCH₂), 49.1 (NCH₂). - MS, m/z (%) **3a**: 693 (41) [M⁺], 437 (59) [M⁺ -2 HI], 364 (13) $[M^+ - 2 HI - HNEt_2]$. - 3b: 729 (5) $[M^+]$, 473 (6) $[M^+ - 2 HI]$. - 3c. 735 (1) $[M^+]$, 607 (2) $[M^+ - HI]$, 480 (3) $[M^+ - HI - I]$, 392 (1) $[M^+ - 2 HI - HNR_2]$.

Tab. 4. Kristall- und Meßdaten von 3a

Summenformel: C13H32I2N4Pt; Molmasse 693.31 g/mol; Kristallhabitus: orangefarbene Nadeln; Kristallabmessungen: $0.68 \times 0.18 \times 0.08$ mm; Raumgruppe: P2₁/n; Z = 4; a = 14.34(1), b = 7.724(3), c = 20.10(1) Å; $\beta = 107.11(4)^{\circ}$; V = 2128.25 Å³; $d_{ber} = 2.159$ g cm⁻³; μ (Mo K_{α}) = 98.29 cm⁻¹; Absorptionskorrektur: 0.726 \leq A \leq 1.611; 4° \leq 2 $\theta \leq$ 50°; Scan-Modus: ω-scan; Gesamtzahl unabhängiger Reflexe: 3750; beobachtete Reflexe: $[I \ge 2 \sigma(I)]$: 2800; 181 verfeinerte Parameter; max. Restelektronendichte: 1.476 e/Å³; max. Parameterveränderung beim letzten Verfeinerungszyklus (Bruchteil der Standardabweichung): 0.827

4. Röntgenstrukturanalyse von 3a^[18]: Geeignete Einkristalle wurden aus n-Hexan bei -18°C erhalten. Weissenberg-Filmaufnahmen ergaben monokline Symmetrie mit den Reflexionsbedingungen h0l: h+l = 2n, h00: h = 2n, 0k0: k = 2n und 00l: l = 2n. Die Bestimmung der Gitterkonstanten (Tab. 4) und die Messung der Reflexintensitäten erfolgten auf einem Stoe-Vierkreisdiffraktometer (Mo- K_{α} , $\lambda = 0.71069$ Å, Graphit-Monochromator). Die Struktur wurde mittels direkter Methoden und sukzessiver Differenz-Fourier-Synthesen (XTAL 3.0^[19]) gelöst, die Verfeinerung erfolgte nach der Methode der kleinsten Fehlerquadrate unter Minimierung der Funktion $\Sigma w \cdot (|f_0| - |f_c|)^2$ mit Einheitsgewichten. Absorptionskorrektur (DIFABS) und Mitverfeinerung der Wasserstoffatome mit isotropen Temperaturfaktoren führten schließlich zu einem Übereinstimmungsfaktor von 5.5% ($R_w = 0.053$).

- ^[3] E. M. Badley, J. Chatt, R. L. Richards, J. Chem. Soc. (A) **1971**, 21.
- [4] [4a] W. P. Fehlhammer, Habilitationsschrift, Universität München, 1976. [4b] W. P. Fehlhammer, R. Metzner, P. Luger, Z. Dauter, in Vorbereitung.
- ^[5] [^{5a]} W. Beck, H. S. Smedal, Angew. Chem. 1966, 78, 267; Angew. Chem. Int. Ed. Engl. 1966, 6, 249. [^{5b]} W. Beck, H. Werner, H. Engelmann, H. S. Smedal, Chem. Ber. 1968, 101, 2143. [^{5c]} W. Beck, H. Werner, H. Engelmann, Inorg. Chim. Acta 1969, 2021 3, 331.
- ^[6] R. J. Angelici, L. Busetto, J. Am. Chem. Soc. **1969**, 91, 3197.
 ^[7] ^[7a] W. Beck, W. P. Fehlhammer, Angew. Chem. **1967**, 79, 146; Angew. Chem. Int. Ed. Engl. **1967**, 6, 169. ^[7b] W. Beck, M. Bauder, W. P. Fehlhammer, P. Pöllmann, H. Schächl, Inorg. Nucl. Chem. Lett. 1968, 4, 143. W. Beck, J. Organomet. Chem. 1990, 383, 143.
- [8]
- ^[9a] E. O. Fischer, W. Kleine, U. Schubert, D. Neugebauer, J. Organomet. Chem. 1978, 149, C40. ^[9b] U. Schubert, D. Neugebauer, P. Friedrich, Acta Crystallogr, Sect. B, 1978, 34, 2293. ^[10] [10a] E. O. Fischer, R. Aumann, Chem. Ber. 1968, 101, 963. –
- [10b] J. A. Connor, P. D. Rose, J. Organomet. Chem. 1972, 46, 329
- ^[11] U. Eckert, C. Robl, W. P. Fehlhammer, Organometallics 1993, *12*, 3241.
- ^[12] G. N. Schrauzer, Angew. Chem. 1975, 87, 579; Angew. Chem. Int. Ed. Engl. 1975, 14, 514.
- ^[13] H. Bock, H. tom Dieck, Z. Anorg. Allg. Chem. 1966, 345, 9.
- ^[14] ^[14a] Nucleophile Additionen an Nitril- und Cyanamidkomplexe sind einschließlich ihrer kinetischen Aspekte gut untersucht, Sind einschneblich ihrer Kinetischen Aspekte gut unterstucht, z.B.: R. P. Houghton, Metal Complexes in Organic Chemistry, Cambridge University Press, Cambridge, 1979, S. 1811.; N. E. Dixon, D. P. Fairlie, W. G. Jackson, A. M. Sargeson, Inorg. Chem. 1983, 22, 4038. – ^[14b] Neueste präparative Arbeiten zu diesem Thema sind; R. A. Michelin, R. Bertani, M. Mozzon, G. Bombiari F. Benztolle, P. L. Angeligi, Organization 1001. G. Bombieri, F. Benetollo, R. J. Angelici, Organometallics 1991, 10, 1751; A. Michelin, R. Bertani, M. Mozzon, G. Bombieri, F. Benetollo, R. J. Angelici, J. Chem. Soc., Dalton Trans. 1993, 959
- ^[15] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., Wiley-Interscience, New York. 1978.
- ^[16] G. P. Jones, P. J. Pauling, J. Cryst. Mol. Struct. 1979, 9, 273.
- ^[17] I. L. Karle, J. Karle, Acta Crystallogr. 1964, 17, 835
- ^[18] Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57887, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ^[19] S. R. Hall, J. M. Stewart, XTAL 3.0, University of Australia and University of Maryland.

[388/93]

^[1] XXIII. Mitteilung: W. P. Fehlhammer, R. Metzner, W. Sperber, Chem. Ber. 1994, 127, 631-637.

^[2] W. P. Fehlhammer, R. Metzner, R. Kunz, Chem. Ber. 1994, 127, 321-327.